

34th Swiss LCA Discussion Forum 'LCA vs. GHG footprint'

The Relation between LCA and GHG Accounting

(14040, 14064, GHG protocol, GHG credits accounting)

Content:

- 1. Starting point and questions
- 2. A look back
- 3. LCA (ISO 14040) versus GHG-Protocol (ISO 14064)
- 4. An example: A company calculating its GHG emissions
- 5. Conclusion & Outlook

Arthur Braunschweig, Dr. oec. HSG, Managing Partner, E2 Management Consulting AG, 13. 3. 2008

E2 Management Consulting AG Wehntalerstr. 3, CH-8057 Zurich, Tel. +41 44 368 50 20, Fax +41 44 368 50 21 www.e2mc.com, e2post@e2mc.com There are two basic approaches to calculate GHG emissions

- Product LCA, based on ISO 14040
- GHG accounting, based on ISO 14064 (22 GHG prot.)

Both methods define how to measure EMISSIONS. ISO 1406x and the GHG-P also define measurement of GHG emission REDUCTIONS.

Practical:

a) To become carbon neutral: Can I use either approach (LCA or GHG-P)?

Methodological:

- b) What are the key differences?
- c) (How) Can I use data from one approach in an analysis of the other type?

Communication:

d) What are the differences in meaning?

LCA: The product or service life cycle (process chain)	GHG Accounting: The Footprint of the Organisation
 What is the total environmental footprint of a product / service (funct' unit)? 	1) What is - the climate effect - of our organisation?
2) Where are its hot spots?	2) Where are its hot spots?
3) How does it compare to alternatives?	3) How much have I reduced? How much need I compensate to be climate neutral?

3. LCA vs. GHG Accounting: Structural differences

	LCA:	GHG Accounting:
Basis for comparison	<u>Functional</u> unit, defined by the study	<u>Annual</u> activity, defined per organigram or ownership
Reponsibility	Spread over multiple org's	The organisation
Time frame	synthetic (processes ran at undefined times)	A <u>specific</u> year
Geographic frame	Disperse, global, or unspe- cified (even where relevant)	specific (but irrelevant)
Environmental Scope	'All' impacts, incl. all GHG	Six GHG (possibly all GHG)
Cut-off appr.	Mass, impact or value	'Materiality' of GHG emissions

	LCA:	GHG Account'g (Sc. 1 + 2):
Allocation needs	Co-production processes	Partly owned subsidiaries
Electricity models	 Various grid models; Emission factors at Consumption ('EFC', emissions per electricity arriving at the <u>consu- mer</u>, i.e. incl. transmission losses) 	. Various grid models; . Emission factors at gene- ration ('EFG'; emissions per electricity <u>produced</u> , i.e. excl. transmission losses)
Fuel emissions	Full supply chain	Own emissions only
Process emissions	Own emissions & supply chain of materials (if relevant)	Own emissions only
E-o-life issues (recycl., waste)	Considered; often relevant (e.g. for water pollution)	Usually not considered; mostly no big GHG issue

	1	2			
SUSTAINAB	ILITY	IN	BUSI	NE	SS

(all data are assumptions!)

Key figures:

- 30'000 guest nights p.a.
- 4,5 Mio CHF turnover

Guest F&B Services:

- 30'000 breakfasts
- 75'000 hot meals

Staff services:

- 7'000 staff nights
- 21'000 staff meals

Input & Output:

- 75'000 I heating oil
- 1 Mio kWh electricity CH-grid
- 10'000 m3 fresh water
- 6 t cleaning agents
- 150 t waste
- 4'000 I fuel (hotel bus/cars)

How much GHG (CO2-eq.) does this system emit?

The answers based on an LCA approach and the GHG-Protocol, respectively.

	LCA approach	GHG-P approach		
		Scope 1	Scope 2	Scope 3
Guest Breakfasts (F&B)	X			Х
Guest Hot Meals (F&B)	X			Х
Staff Hot Meals (F&B)	x			x
Heating oil	x	x		
Heating Oil Precombustion	X			x
Electricity	X		X	
Electricity Precombustion	X			X
Cooling Agents emission	X	(x)		
Water use, waste water	X			х
Municipal Waste treatment	X			Х
Cleaning agents production	x			Х
Hotel bus fuel use	x	x		
Staff cars fuel use	X	X		
Fuel Precombustion	X			Х

	LCA approach	Gł	IG-P approa	ich
		Scope 1	Scope 2	Scope 3
Guest Breakfasts (F&B)	X			Х
Guest Hot Meals (F&B)	x			Х
Staff Hot Meals (F&B)	x			Х
Heating oil	x	X		
Heating Oil Precombustion	x			x
Electricity	x		X	
Electricity Precombustion	x			х
Cooling Agents emission	V	(x)		
Water use (delivery)				x
Municipal Waste treatment	The function		appiention	$\setminus x$
Cleaning agents production	'Hotel stay'	'ine or	Hotel'	×
Hotel bus fuel use				
Staff cars fuel use		X		
Fuel Precombustion	X			х

Below are the GHG emission factors according to available sources, for an LCA and a GHG-P approach respectively. The GHG-Protocol gives specific data for Scopes 1 and 2. As there is no mandatory guidance for scope 3, we may use the identical LCA data there.

Input / Process	Unit	LCA Dat	а	GHG-P Data	Values		
	(kg CO2eq per)	Source	Values	Source	Sc 1	Sc 2	Sc 3
Breakfasts	unit	(Ademe)	1.5	id.			1.5
Guest Hot Meals	unit	(Ademe)	4.4	id.			4.4
Staff Hot Meals	unit	(Ademe)	3.3	id.			3.3
Heating Oil use	kWh	EMIS	0.27	GHG-P	0.23		
Heating Oil precombust.	kWh	EMIS	0.05	id.			0.05
Electricity Swiss	kWh	EMIS	0.13	GHG-P		0.024	
R134a emission	kg	EMIS	1300	id.	1300		
Fresh water prep. & waste water treatm't	m3	EMIS	0.59	id.			0.59
Municipal waste incineration	kg	EMIS	0.51	id.			0.51
Cleaning Agents	kg	(EMIS)	3	id.			3
Fuel use (Euro3)	liter	EMIS	2.4	GHG-P	2.34		
Fuel Precombustion	liter	EMIS	0.59	id.			0.59

Notes:

- Ademe = Data adapted from ADEME, Bilan Carbone Entreprises et Collectivités, Guide des facteurs d'émissions, V5, Jan. 2007

- EMIS = LCA Data from Swiss LCA Software EMIS (by Carbotech), containing e.g. the ecoinvent 2.0 data

- GHG-P = Data from excel worksheets from www.ghgprotocol.org

- Sc = Scope

- id = identical sources and values used for both approaches

- Bold values = differing values
- Values in brackets, (Ademe) and (EMIS), are assumed averages, based on various data from these sources

- R134a emission: For GHG-P either Scope 1 or 3, as it is no Kyoto gas

4. Case Study: Function = 900 t, organisation = 200 t

- Emission factors for similar systems differ (ecoinvent, GHG-P, Adème, ..)
- Both approaches make sense, but they express different concepts:
 - .. LCA = <u>full supply chain</u> responsibility
 - .. GHG-P = <u>own process</u> responsibility
- With the GHG-P, many decision responsibilities are hidden in Scope 3 (e.g. own selection of 3rd party transport means)
- LCA creates stronger communication basis towards clients
- GHG-P is budgetary correct, as organisations can be added up
- LCA covers additional environmental issues
- GHG-P covers reduction calculation (relative to baseline technology, additionality check, annual values)

- Use Scope 1 & 2 for defining minimal GHG compensation
- Use LCA approach (or "supply and consumption scope 3") for marketing claims on products & services
- LCA can be structured along 'Scopes 1, 2, 3' Possibly this could create compatibility.
- No single data base contains all data one would want.
- Data bases are of differing quality (sources, data age, transparency). There is a need for reviews and standardisation.

